Journal of Chromatography, 330 (1985) 203–216 Elsevier Science Publishers B.V., Amsterdam — Printed in The Netherlands

CHROM. 17 801

VAPOR PRESSURE ESTIMATES OF INDIVIDUAL POLYCHLORINATED BIPHENYLS AND COMMERCIAL FLUIDS USING GAS CHROMATO-GRAPHIC RETENTION DATA

WILLIAM T. FOREMAN and TERRY F. BIDLEMAN*

Department of Chemistry and Marine Science Program, University of South Carolina, Columbia, SC 29208 (U.S.A.)

(Received March 21st, 1985)

SUMMARY

The liquid phase vapor pressures at 25°C of 27 polychlorinated biphenyls were plotted *versus* published retention indices on two gas chromatographic stationary phases. Good fits were obtained ($r^2 = 0.996-0.999$) for data on an intermediate polarity (Dexsil-410) capillary and a non-polar (OV-101) packed column. Estimates of vapor pressures for 134 polychlorinated biphenyls found in five commercial Aroclor fluids were made using these two plots and published retention indices. Vapor pressure estimates of the five fluids were calculated using individual polychlorinated biphenyl vapor pressures and Aroclor compositional information, assuming Raoult's law. The resulting vapor pressures at 25°C for Aroclors 1248, 1254 and 1260 were *ca.* 2.3–3.3 times lower than values previously reported, whereas the vapor pressure of Aroclor 1242 was 1.4 times higher.

INTRODUCTION

Predicting contaminant transport, distribution, and fate in the environment relies on accurate physical and chemical properties for developing suitable models. Required vapor pressure and water solubility data are lacking, or are in some cases questionable, particularly for components of complex mixtures.

Only limited vapor pressure data are available for polychlorinated biphenyls (PCBs), an important class of organic pollutants. Up to a few years ago, the only vapor pressure information was for Aroclor fluids, determined in the 150–300°C range by Monsanto Corporation¹. Mackay and Wolkoff² extrapolated these data to estimate Aroclor vapor pressures at 25°C, which today are the most widely quoted volatility data for PCB fluids. Aroclor mixtures contain fifty or more components and the vapor pressures referenced above are dominated by a few of the more volatile PCBs.

Of the 209 possible PCBs, vapor pressures of only a few have been directly measured by physical methods (effusion, gas saturation, or extrapolation from boiling point data). Recently, Bidleman³ estimated the liquid phase vapor pressures

the 95% confidence interval for single predicted $P_{\rm L}^0$ from published RI values. Data points: \blacksquare = biphenyl and three monochlorobiphenyls (not included in regression); \oplus = di- through heptachlorobiphenyls.

Fig. 2. Plot of -log P⁰₀ (Torr, 25°C) vs. retention index at 200°C on OV-101 liquid phase. The 95% confidence interval is much smaller than in Fig. 1 (Table II) and is not shown. (**a** and **b** same as Fig. 1.)

 (P_L^0) at 25°C of 30 PCBs using a capillary gas chromatographic (GC) method. This paper describes the use of this GC determined vapor pressure data set in conjunction with published retention indices of PCBs to estimate the liquid phase vapor pressures of 134 PCBs found in five Aroclor fluids.

METHOD

In 1977, Albro *et al.*⁴ computed retention indices (RI) for all of the 209 possible PCBs and biphenyl on thirteen GC liquid phases, including 3% Dexsil-410 and 10% OV-101 at 200°C. Albro and Parker⁵ subsequently determined the composition of the PCB mixtures Aroclor 1016 and 1242 using twelve packed columns containing different GC phases. In 1981, Albro *et al.*⁶ used a capillary Dexsil-410 column to determine RI at 200°C and molar percentages of all the PCB components in Aroclors 1248, 1254 and 1260.

We plotted $-\log P_{\rm L}^0$ at 25°C versus RI at 200°C for the 30 PCBs and biphenyl whose $P_{\rm L}^0$ had been determined by capillary GC, using RI data on Dexsil-410 and OV-101 phases. The Dexsil-410 RI were the experimental values of Albro *et al.*⁶ for 23 of the PCBs, and those calculated from the half-index table of Albro *et al.*⁴ for the remaining seven and biphenyl. RI for the 30 PCBs and biphenyl on OV-101 were calculated using the half-index table.

Linear regression equations were fitted to these two plots using 27 of the PCBs, with biphenyl and the three monochlorobiphenyls being excluded (see Discussion section). From these two equations, estimates of P_L^0 at 25°C for 134 PCBs found in Aroclors 1016, 1242, 1248, 1254 and 1260 were calculated using the published RI values.

The partial pressures $(P_{L,i})$ of individual PCBs in each fluid were calculated using the percent composition information of Albro *et al.*^{5,6} assuming Raoult's Law:

$$P_{\mathrm{L},i} = P_{\mathrm{L},i}^0 X_i \tag{1}$$

where $P_{L,i}^0$ is the P_L^0 for the pure component, and X_i is the mole fraction of an individual PCB in the fluid. Vapor pressures of the five Aroclors were estimated by summing the partial pressures of individual PCBs in each fluid.

RESULTS AND DISCUSSION

Retention index correlated vapor pressures of individual PCBs

The $-\log P_L^0$ versus RI correlation plot for data on the intermediate polarity Dexsil-410 phase is shown in Fig. 1. A similar plot using RI data on the non-polar OV-101 phase is presented in Fig. 2. Both of these plots reveal a marked discontinuity which occurs between the mono- and dichlorobiphenyls. Biphenyl and the three monochlorobiphenyls are shifted off a line passing through the di- to heptachlorobiphenyls. The reason for this deviation is not understood; however, the discrepancies are not likely to be due to inaccuracies in P_L^0 , since the capillary GC measured P_L^0 (ref. 3) agreed well with the literature values for these compounds (Table I). Because of this obvious discontinuity only the di- to heptachlorobiphenyl points were used in calculating the $-\log P_L^0$ versus RI regression equations.

TABLE I

VAPOR PRESSURES OF INDIVIDUAL PCBs FOUND IN AROCLOR FLUIDS

IUPAC	Chlorine substitution	$-\log P_L^0(Torr, 25^\circ C)$					
140.	pattern	OV-101 RI correlation	Dexsil 410 RI correlation	GC method*	Literature value	Ref.	
0	Biphenyl			1.304	1.376	3	
Monochlor	obiphenyls						
1	2			1.782	1.860	8	
2	3			2.126			
3	4			2.156	2.167**		
Dichlorobig	ohenvls						
4 '	2,2'	2.611	2.600		2.650	10	
6	2,3'	2.887	2.918				
7	2,4	2.803	2.791	2.739			
8	2,4′	2.929	2.970				
9	2,5	2.761	2.759	2.860	3.237	9	
10	2,6	2.598	2.556				
11***	3,3'	3.164	3.244	3.167			
12	3,4	3.231	3.331				
13	3,4'	3.205	3.299				
14	3,5	3.025	3.057				
15	4,4'	3.247	3.355	3.237	3.485	10	
Trichlarabi	nhenvls						
16	2 3 2'	3 394	3 347				
17	2,5,2	3 277	3 256				
18	2,5,2	3 235	3 204				
19	2,6,2'	3.071	3 009				
20	2,0,2	3 670	3 729				
20	2,3,5	3 712	3 764				
25	2,3,4	3 553	3 562				
26	2, 1, 5	3 511	3 510				
20	2,5,5	3 348	3 327				
28	2,0,5	3 595	3 593				
29***	245	3 469	3 4 58	3 478			
30***	2,1,5	3 080	2 993	3.056	3 648	9	
31	2,1,0	3 553	3 586	3 520	5.010	,	
32	2,5,4	3 390	3 375	5.520			
33	3 4 2'	3 704	3 784				
35	3 4 3'	3 980	4 102				
37	3 4 4'	4 022	4 1 50				
39	3,5,4'	3.817	3.884				
Taturahlan							
1 etrachiord	o ipnenyis	4 177	4 100	4 1 2 4			
40 41	2,3,2,5	4.1//	4.190	4.134			
41	2,3,4,2	4.003	4.134				
42 42	2,3,2,4	4.000	4.002				
4.) //	2,3,3,2	5.905 A 019	J.044 4 011				
44	2, 2, 2, 3	4.010	7.011				
4J 16	2,3,0,2	2.111	2 917				
40	2, 3, 2, 0 2 A 2' A'	2.022	2.012				
4/	∠,4,∠ ,4	3.743	3.731				

VAPOR PRESSURE ESTIMATES OF PCBs

TABLE I (continued)

IUPAC No	Chlorine	$-\log P_L^0$ (To	$-\log P_L^0$ (Torr, 25°C)			
	pattern	OV-101 RI correlation	Dexsil 410 RI correlation	GC method*	Literature value	Ref.
48	2,4,5,2'	3.943	3.911			
49	2,4,2',5'	3.901	3.915			
52	2,5,2',5'	3.859	3.888	3.844	4.108	11
53	2,5,2',6'	3.696	3.605	3.688		
54	2,6,2',6'	3.532	3.411			
55	2,3,4,3'	4.362	4.460			
56	2,3,3',4'	4.487	4.611			
60	2,3,4,4'	4.403	4.508			
66	2,4,3',4'	4.370	4.420	4.335		
70	2.5.3'.4'	4.328	4.384	4.353		
71	2.6.3'.4'	4.165	4.182			
72	2.5.3'.5'	4.123	4.130			
74	2.4.5.4	4.261	4.285			
75	2.4 6.4'	3 871	3 820			
76	3452	4 345	4 496			
70	3 4 3' 4'	4 797	4.965	4 800		
78	3 4 5 3'	4 621	4.905	4.007		
70	3 1 3' 5'	4 502	4.610			
80	3 5 3' 5'	4.392	4.090			
80 81	3,5,5,5	4.307	4.410			
01	3,4,3,4	4.003	4.803			
Pentachlor	obiphenvls					
83	2.3.5.2'.3'	4.688	4.643			
84	2.3.6 2'.3'	4 554	4 480			
85	2.3 4 2' 4'	4 751	4 786			
87	2.3.4.2'.5'	4 709	4 738	4 770		
91	2,3,6,2',4'	4 437	4 301	4.170		
92	2 3 5 2' 5'	4 529	4 464			
95	2,3,5,2,5	4 395	4 253			
97	2,5,5,2,5	4.375	4.200			
98	2,4,5,2,3	4.336	4.702			
00	2,4,6,2,5 2 A 5 2' A'	4.550	4.551	1 658		
101	2,7,3,2,7	4.009	4.551	4.050	4 627	11
102	2, 4, 5, 2, 5 2 A 5 2' 6'	4.307	4.317	4.500	4.027	11
102	2,4,5,2,0	4.403	4.301			
105	2,4,0,2,5	4.177	4.074	6 170		
105	2, 3, 4, 5, 4	5.178	5.294	5.170		
100	2, 3, 4, 5, 5	4.980	5.020			
108	2,3,4,3,5	4.9/3	5.052			
110	2,3,6,3',4'	4.864	4.825			
113	2,3,6,3',5'	4.659	4.559			
114	2,3,4,5,4	5.028	5.064			
118	2,4,5,3',4'	5.036	5.108	5.047		
120	2,4,5,3',5'	4.831	4.817			
121	2,4,6,3',5'	4.441	4.341			
122	3,4,5,2',3'	5.128	5.278			
123	3,4,5,2',4'	5.011	5.127			
126	3,4,5,3',4'	5.438	5.668			
127	3,4,5,3',5'	5.233	5.394			

207

(Continued on p. 208)

No.substitution pattern $OV-101 RI$ correlationDexsil 410 RI method*GC method*Lite valuHexachlorobiphenyls1282,3,4,2',3',4'5.5605.6605.5921312,3,4,6,2',3'5.0234.9051322,3,4,2',3',6'5.2455.1671332,3,5,2',3',5'5.1995.0841342,3,5,6,2',3'5.0364.8571352,3,5,2',3',6'5.0654.8611362,3,6,2',3',6'5.4175.4291382,3,4,2',4',5'5.1705.1431432,3,4,5,2',6'5.1705.1431482,3,5,2',4',5'5.1034.9251492,3,6,2',5'5.1034.9251512,3,5,6,2',5'4.8774.7181532,4,5,2',4',5'5.2755.2155.280	rature Ref. e
Hexachlorobiphenyls 128 2,3,4,2',3',4' 5.560 5.660 5.592 131 2,3,4,6,2',3' 5.023 4.905 132 2,3,4,2',3',6' 5.245 5.167 133 2,3,5,2',3',5' 5.199 5.084 134 2,3,5,2',3',6' 5.065 4.861 136 2,3,6,2',3',6' 4.931 4.659 138 2,3,4,2',4',5' 5.170 5.143 143 2,3,4,5,2',6' 5.170 5.143 144 2,3,5,2',4',5' 5.237 5.143 143 2,3,4,5,2',6' 5.170 5.143 143 2,3,4,5,2',6' 5.103 4.925 4.968 149 2,3,6,2',4',5' 5.103 4.925 4.968 151 2,3,5,6,2',5' 4.877 4.718 153 2,4,5,2',4',5' 5.275 5.215 5.280	
1282,3,4,2',3',4'5,5605,6605,5921312,3,4,6,2',3'5,0234,9051322,3,4,2',3',6'5,2455,1671332,3,5,2',3',5'5,1995,0841342,3,5,6,2',3'5,0364,8571352,3,5,2',3',6'5,0654,8611362,3,6,2',3',6'5,4175,4291382,3,4,2',4',5'5,4175,4291432,3,5,2',6'5,1705,1431462,3,5,2',4',5'5,2375,1431482,3,5,2',4',5'5,1034,9251512,3,5,6,2',5'4,8774,7181532,4,5,2',4',5'5,2755,2155,280	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
138 2,3,4,2',4',5' 5.417 5.429 5.397 143 2,3,4,5,2',6' 5.170 5.143 146 2,3,5,2',4',5' 5.237 5.143 148 2,3,5,2',4',6' 4.847 4.682 149 2,3,6,2',4',5' 5.103 4.925 4.968 151 2,3,5,6,2',5' 4.877 4.718 153 2,4,5,2',4',5' 5.275 5.215 5.280	
143 2,3,4,5,2',6' 5.170 5.143 146 2,3,5,2',4',5' 5.237 5.143 148 2,3,5,2',4',6' 4.847 4.682 149 2,3,6,2',4',5' 5.103 4.925 4.968 151 2,3,5,6,2',5' 4.877 4.718 153 2,4,5,2',4',5' 5.275 5.215 5.280	
146 2,3,5,2',4',5' 5,237 5,143 148 2,3,5,2',4',6' 4,847 4,682 149 2,3,6,2',4',5' 5,103 4,925 4,968 151 2,3,5,6,2',5' 4,877 4,718 153 2,4,5,2',4',5' 5,275 5,215 5,280	
1482,3,5,2',4',6'4.8474.6821492,3,6,2',4',5'5.1034.9254.9681512,3,5,6,2',5'4.8774.7181532,4,5,2',4',5'5.2755.2155.280	
149 2,3,6,2',4',5' 5.103 4.925 4.968 151 2,3,5,6,2',5' 4.877 4.718 153 2,4,5,2',4',5' 5.275 5.215 5.280	
151 2,3,5,6,2',5' 4.877 4.718 153 2,4,5,2',4',5' 5.275 5.215 5.280	
153 2,4,5,2',4',5' 5.275 5.215 5.280	
154 2,4,5,2',4',6' 4.885 4.778	
156 2,3,4,5,3',4' 5.803 5.922 5.793	
157 2,3,4,3',4',5' 5.819 6.022	
158 2,3,4,6,3',4' 5.333 5.473	
163 2,3,5,6,3',4' 5.346 5.433	
167 2,4,5,3',4',5' 5.677 5.747	
168 2,4,6,3',4',5' 5.287 5.330	
Heptachlorobiphenyls	
170 2,3,4,5,2',3',4' 6.184 6.216 6.202	
171 2,3,4,6,2',3',4' 5,715 5,624 5,752	
174 2,3,4,5,2',3',6' 5.870 5.755	
176 2,3,4,6,2',3',6' 5.400 5.179	
177 2,3,5,6,2',3',4' 5,727 5,596	
179 2,3,5,6,2',3',6' 5.413 5.123	
180 2,3,4,5,2',4',5' 6.041 5.970 6.013	
181 2,3,4,5,6,2',4' 5.660 5.501	
182 2,3,4,5,2',4',6' 5.652 5.573	
183 2,3,4,6,2',4',5' 5.572 5.418	
185 2,3,4,5,6,2',5' 5.618 5.445	
186 2.3.4,5,6,2',6' 5.455 5.247	
187 2.3,5,6,2',4',5' 5.585 5.366 5.640	
188 2,3,5,6,2',4',6' 5.195 4.949	
189 2,3,4,5,3',4',5' 6.443 6.606	
190 2,3,4,5,6,3',4' 6,087 5,958	
192 2,3,4,5,6,3',5' 5.882 5.728	
193 2,3,5,6,3',4',5' 5.987 6.181	
Octachlorohiphenyls	
194 2.3.4.5.2'.3'.4'.5' 6.808 6.872	
195 2.3.4.5.6.2'.3'.4' 6.469 6.252	
196 2.3.4.5.2'.3'.4'.6' 6.339 6.200	
197 2.3.4.6.2'.3'.4'.6' 5.870 5.807	
198 2,3,4,5,6,2',3',5' 6.289 6.037	

TABLE I (continued)

IUPAC	Chlorine	$-\log P_L^0$ (To				
No.	substitution pattern	OV-101 RI correlation	Dexsil 410 RI correlation	GC method*	Literature value	Ref.
199	2,3,4,5,6,2',3',6'	6.154	5.902			
200	2,3,4,6,2',3',5',6'	5.882	5.604			
201	2,3,4,5,2',3',5',6'	6.351	6.125			
202	2,3,5,6,2',3',5',6'	5.895	5.533		5.306	12
203	2,3,4,5,6,2',4',5'	6.326	6.105			
204	2,3,4,5,6,2',4',6'	5.937	5.684			
205	2,3,4,5,6,3',4',5'	6.728	6.661			
Nonachloro	biphenvls					
206	2,3,4,5,6,2',3',4',5'	7.093	6.940			
207	2,3,4,5,6,2',3',4',6'	6.624	6.427			
208	2,3,4,5,6,2',3',5',6'	6.636	6.304			
209	Decachlorobiphenyl	7.378	7.003		7.414	12

TABLE I

* Average of P_L values determined on Apolane 87 and BP-1 liquid phases using the GC method of Bidleman (ref. 3).

** Average of values reported in refs. 8 and 12.

*** Not found in Aroclor fluids.

A good fit ($r^2 = 0.996$) was obtained using the Dexsil-410 RI data with the model:

$$-\log P_{\rm L}^0 = (-3.974 \cdot 10^{-3}) \text{RI} + 4.434 \tag{2}$$

Further improvement was obtained ($r^2 = 0.999$) with the model:

$$-\log P_{\rm L}^0 = (-4.189 \cdot 10^{-3}) \text{RI} + 4.184 \tag{3}$$

using the RI data on OV-101. Vapor pressure estimates of the 134 PCBs found in five Aroclor fluids were calculated using these two equations and the RI data of Albro *et al.*^{4,6} (Table I). Vapor pressure estimates of the other 75 PCBs not found in the Aroclor fluids can be obtained by using eqn. 2 or 3 and the half-index table of Albro *et al.*⁴.

Values of P_L^0 obtained by correlation from the two sets of RI data differed on the average by 22.7% and in the worst case (decachlorobiphenyl) by a factor of 2.4, with the heavier PCBs exhibiting a slightly greater overall difference. These differences were due to changes in elution order for some PCBs on the two liquid phases.

Within a given series of isomers, P_L^0 generally increased with the number of *ortho*-chlorines. This "*ortho*-effect" produces large differences in volatilities of PCBs having the same chlorine content as observed by Bidleman³. Mullin *et al.*⁷ also found that retention times of isomeric PCBs increased with decreasing number of *ortho*-substituted chlorines.

Accuracy of RI-correlated vapor pressures

Vapor pressures of only a few PCBs have been measured by methods other

than GC. Boiling point data^{8,9} were extrapolated to estimate vapor pressures of 2chlorobiphenyl, 4-chlorobiphenyl, 2,5-dichlorobiphenyl, and 2,4,6-trichlorobiphenyl. The resulting vapor pressures at 25°C were P_L^0 , since extrapolations were made from above the melting points. Vapor pressures of the crystalline solids (P_S^0) at 25°C were determined by effusion¹⁰ for 2,2'-dichlorobiphenyl and 4,4'-dichlorobiphenyl, and by gas saturation^{11,12} for 2,5,2',5'-tetrachlorobiphenyl, 2,4,5,2',5'-pentachlorobiphenyl, 4-chlorobiphenyl, 2,3,5,6,2',3',5',6'-octachlorobiphenyl, and decachlorobiphenyl. For these, P_L^0 were estimated from P_S^0 using¹³:

$$\ln P_{\rm L}^0/P_{\rm S}^0 = 6.8 \ (T_{\rm m} - 298)/298 \tag{4}$$

where T_m is the melting point (°K). The resulting P_L^0 for the above PCBs and the average of several experimental results for biphenyl³ are listed in Tables I and II under "Literature value".

Average PCB P_L^0 values from OV-101 and Dexsil-410 correlations are compared with literature values in Table II. In all cases but one, the correlated results are slightly higher. The worst agreements occur with 2,5-dichlorobiphenyl and 2,4,6-trichlorobiphenyl, for which the correlated P_L^0 are 3.0 and 4.1 times higher than P_L^0 estimated from boiling point data. However, the extrapolated P_L^0 at 25°C were based on only three boiling points above 100°C, and thus their accuracies are uncertain. Including the two worst cases, the average agreement between correlated and literature P_L^0 was about a factor of two.

The 95% confidence intervals of P_L^0 (Fig. 1 and Table II) were calculated using the method described in Draper and Smith¹⁴. Confidence bands for the OV-101 plot were very narrow (Table II), and these bands were omitted from Fig. 2 for clarity. Since GC-determined P_L^0 were available only up to the heptachlorobiphenyls, extrapolation was necessary to calculate P_L^0 for the octa-through decachlorobiphenyls, and whether linearity holds in this region remains uncertain. However, the fairly good agreement between predicted and literature P_L^0 for the one octachlorobiphenyl and decachlorobiphenyl (Table II) suggests the same level of accuracy for the other octaand nonachlorobiphenyls.

TABLE II

Compound	P_L^0 (Torr, 25°C) \pm 95% confidence limits						
	OV-101	Dexsil-410	Literature value				
2,2'	$2.4 \pm 0.29 \cdot 10^{-3}$	$2.5 \pm 1.9 \cdot 10^{-3}$	$2.2 \cdot 10^{-3}$				
2,5	$1.7 \pm 0.20 \cdot 10^{-3}$	$1.7 \pm 1.3 \cdot 10^{-3}$	5.8 · 10 ⁻⁴				
4,4'	$5.7 \pm 0.65 \cdot 10^{-4}$	$4.4 \pm 3.2 \cdot 10^{-4}$	$3.3 \cdot 10^{-4}$				
2,4,6	$8.3 \pm 0.96 \cdot 10^{-4}$	$1.0 \pm 0.75 \cdot 10^{-3}$	$2.2 \cdot 10^{-4}$				
2,5,2',5'	$1.4 \pm 0.16 \cdot 10^{-4}$	$1.3 \pm 0.92 \cdot 10^{-4}$	$7.8 \cdot 10^{-5}$				
2,4,5,2',5'	$2.7 \pm 0.30 \cdot 10^{-5}$	$3.0 \pm 2.1 \cdot 10^{-5}$	$2.4 \cdot 10^{-5}$				
2,3,5,6,2',3',5',6'	$1.3 \pm 0.15 \cdot 10^{-6}$	$2.9 \pm 2.1 \cdot 10^{-6}$	$4.9 \cdot 10^{-6}$				
Decachlorobiphenyl	$4.2 \pm 0.53 \cdot 10^{-8}$	$9.9 \pm 7.9 \cdot 10^{-8}$	3.8 · 10 ⁻⁸				

COMPARISON OF PCB VAPOR PRESSURES CALCULATED USING RI CORRELATION WITH VALUES REPORTED IN THE LITERATURE

Vapor pressures of Aroclor fluids

Partial pressures $(P_{L,i})$ of individual PCBs found in the five Aroclors were estimated by assuming that the solutions behaved ideally. $P_{L,i}$ for di- through nonachlorobiphenyls were calculated using Dexsil-410 correlated P_L^0 and are presented in Table III. A similar table of $P_{L,i}$ values computed using OV-101 correlated P_L^0 is omitted from this paper to save space, but can be obtained from the authors. $P_{L,i}$ of biphenyl and the monochlorobiphenyls (Table III) were calculated using literature P_L^0 (Table I). No entry in Table III indicates that either the PCB was not found in the Aroclor fluid, or that its $P_{L,i}$ contribution to the overall vapor pressure was insignificant (less than 10^{-9} Torr). Vapor pressures of the Aroclor fluids are largely dominated by a small number of PCBs in each mixture. The high partial pressures of some PCBs are due to high vapor pressures and/or large mole fractions.

Vapor pressures of each Aroclor fluid were calculated by summing the partial pressures of individual PCBs found in the fluid. Resulting overall vapor pressures for Aroclors 1016, 1242, 1248, 1254, and 1260 are presented in Table IV, along with Aroclor vapor pressures calculated by extrapolation of Monsanto data¹ from 150–300°C to 25°C using the Antoine equation by Mackay and Wolkoff².

Aroclor vapor pressures calculated using Dexsil-410 and OV-101 correlated P_L^0 values exhibited good agreement, and decreased in the order 1016 > 1242 > 1248 > 1254 > 1260. The values reported by Mackay and Wolkoff² decreased in the order 1248 > 1242 > 1254 > 1260, with 1016 not reported. The higher vapor pressure reported² for 1248 versus 1242 is surprising, especially considering the predominance of more volatile mono-, di- and trichlorobiphenyls in Aroclor 1242 (Table III). The reason for this discrepancy may be due to the data originally published by Monsanto¹. Monsanto reported the Aroclor vapor pressure order 1242 > 1248 > 1254 > 1260 at 100°C, with the Aroclor 1242, 1254, and 1260 vapor pressure versus 1/T plots exhibiting very similar slopes. However, the Aroclor 1248 slope was different¹, and as a consequence when the data were extrapolated to 25°C by Mackay and Wolkoff² the 1248 vapor pressure was higher.

Vapor pressures of Aroclors 1248, 1254, and 1260 were *ca*. 2.4–3.3 times lower than values previously reported by Mackay and Wolkoff (Table IV). The lower values found here may be due to several reasons:

(1) Extrapolation of vapor pressures from high temperature data using the Antoine equation tends to overestimate the vapor pressure¹³, and thus the values reported by Mackay and Wolkoff² may be too high.

(2) There is no experimental evidence to support ideal behavior of Aroclor fluids. Therefore in the calculation of PCB partial pressures, our assumption that these solutions behave ideally has possibly resulted in an underestimation of the Aroclor vapor pressures. According to Reid *et al.*¹⁵ vapor pressures calculated using Raoult's Law generally are lower than those determined experimentally, since activity coefficients are usually greater than unity. Eggertsen *et al.*¹⁶ also cited deviation from ideal solution behavior as a factor which may influence the accuracy of the GC method for estimating vapor pressures of petroleum distillate fractions.

(3) Differences in composition of technical PCB mixtures are known to exist and have been reported in the literature^{17,18}.

TABLE III

PARTIAL PRESSURES OF INDIVIDUAL PCBs IN AROCLOR FLUIDS FROM DEXSIL 410 RE-TENTION INDEX CORRELATION DATA

IUPAC	Chlorine	$P_{L,i} (10^{-6} \text{ Torr}, 25^{\circ}C)$					
NO.	substitution pattern	1016	1242	1248	1254	1260	
0	Biphenyl	210.36*	4.21*				
Monochlor	obiphenyls						
1	2	110.43*	93.87*				
2	3	7.48*	2.99*				
3	4	68.08*	14.98*				
Dichlorobig	ohenyls						
4	2,2'	109.52	100.22	6.28			
6	2.3'	16.55	14.98	8.33	0.85		
7	2.4	18.77	16.83				
8	2.4'	110 37	96.12	1 93			
ğ	2,5	5.92	5 40	1.95			
10	26	5 56	3 61				
12	3.4	0.51	0.42				
12	3 4'	0.51	0.42				
14	35	3.24	3.07				
15	5,5 4 4'	J.24 1 70	1.37				
15	т,т	7.72	4.57				
Trichlorobi	phenyls						
16	2,3,2'	15.74	14.62	3.78			
17	2,4,2'	17.42	16.20	1.05			
18	2,5,2'	67.96	58.52	62.20	0.44		
19	2,6,2'	10.58	9.50				
20	2,3,3'	7.45	6.79				
22	2,3,4'	4.82	4.55	2.13			
25	2,4,3'	4.91	4.61				
26	2,5,3'	1.92	1.70	2.32			
27	2,6,3'	2.73	2.54				
28	2,4,4'	36.96	33.95				
31	2,5,4'	12.24	11.75	24.15	1.87		
32	2,6,4'	9.74	9.07	6.16			
33	3.4.2'	5.06	4.65				
35	3.4.3'	0.30	0.52				
37	3.4.4'	1.34	1.15	0.91	0.14	0.064	
39	3,5,4'	1.41	1.34				
Tetrachloro	hinhenvls						
40	2.3.2'.3'	0.12	0.097	0.72	0.17	0.026	
41	2,3,2,5	1 47	1 23	J. / L	0.17	0.020	
42	2,3,3,2	1.7/	ل مد . د	6 1 1	1 80	0.57	
42	2,2,2,7	0.67	0.63	0.11	1.07	0.57	
	2,3,3,2	1 11	1 02				
45	2,3,2,3	2.11	1 91	11.51	0.30		
	2,3,0,2	2.01	0.49	11.31	0.30		
47	2,3,2,0 2 A 2' A'	0.31	1.02	2 72	0.61	0.094	
-+/ /8	2,7,2,7 2 A 5 2'	2.12	1.93	3.13	0.01	0.094	
+0 40	2,4,3,2	1./3	1.03	4.62	1.00	0.52	
47 50	2,4,2,3	4.23	3. 77	4.03	1.98	0.55	
52	2,3,2',3'	5.63	5.28	10.82	5.64	2.47	
55	2,5,2,0	2.00	2.41	15.64	0.32		
54	2.0.2.0	0.74	0.66				

VAPOR PRESSURE ESTIMATES OF PCBs

TABLE III (continued)

IUPAC No	Chlorine substitution	$P_{L,i} (10^{-6})$	$P_{L,i} (10^{-6} \text{ Torr}, 25^{\circ}C)$			
_	pattern	1016	1242	1248	1254	1260
55	2,3,4,3'			0.038	0.15	0.042
56	2,3,3',4'		0.15		0.044	0.007
60	2,3,4,4'		0.065			
66	2,4,3',4'	0.053	0.31	1.88	0.85	0.084
70	2,5,3',4'		0.46	2.63	1.96	0.35
71	2,6,3',4'			0.43		
72	2,5,3',5'		0.24	1.56	0.75	0.21
74	2,4,5,4'	0.70	1.05	0.13	0.16	0.047
75	2,4,6,4'	3.63	3.30			
76	3,4,5,2'				0.057	0.003
77	3,4,3',4'		0.037	0.051	0.013	0.004
78	3,4,5,3'		0.081	•••••		
79	3,4,3',5'		0.049		0.047	0.008
80	3,5,3',5'					0.000
81	3,4,5,4'		0.038			
Pentachloro	obiphenyls					
83	2,3,5,2',3'				0.073	0.020
84	2,3,6,2',3'	0.003	0.13	0.23	0.57	0.23
85	2,3,4,2',4'		0.065	0.090	0.35	0.051
87	2,3,4,2',5'		0.016	0.19	0.70	0.20
91	2,3,6,2',4'			0.89	2.50	1.61
92	2,3,5,2',5'		0.041	0.069	0.22	0.072
95	2,3,6,2',5'	0.10	0.30			
97	2,4,5,2',3'			0.15	0.51	0.12
98	2,4,6,2',3'	0.022	0.073			
99	2,4,5,2',4'		0.15	0.71	1.71	0.23
101	2,4,5,2',5'		0.082	0.45	2.11	1.53
102	2,4,5,2',6'					
103	2,4,6,2',5'			1.59	0.24	0.084
105	2,3,4,3',4'		0.013			
106	2,3,4,5,3'				0.038	0.006
108	2,3,4,3',5'	0.014	0.041	0.002	0.049	0.012
110	2,3,6,3',4'			0.25	1.27	0.53
113	2,3,6,3',5'	0.003	0.11	0.86		0.003
114	2,3,4,5,4'				0.022	0.003
118	2,4,5,3',4'				0.63	0.16
120	2,4,5,3',5'		0.047		0.023	0.46
121	2,4,6,3',5'		0.42	1.97	1.60	0.26
122	3,4,5,2',3'				0.040	0.099
123	3,4,5,2',4'		0.027			
126	3,4,5,3',4'		0.001		0.003	0.034
127	3,4,5,3',5'		0.002			
Hexachloro	biphenyls					0.04-
128	2,3,4,2',3',4'				0.029	0.010
131	2,3,4,6,2',3'				0.017	0.001
132	2,3,4,2',3',6'				0.14	0.19
133	2,3,5,2',3',5'			0.093	0.002	0.005
134	2,3,5,6,2',3'			0.015	0.053	0.14
135	2,3,5,2',3',6'				0.027	0.040

(Continued on p. 214)

IUPAC	Chlorine	$P_{L,i} (10^{-6} \text{ Torr, } 25^{\circ}C)$					
NO.	pattern	1016	1242	1248	1254	1260	
136	2,3,6,2',3',6'			0.044	0.074	0.24	
138	2,3,4,2',4',5'		0.003	0.007	0.15	0.19	
143	2,3,4,5,2',6'		0.005				
146	2,3,5,2',4',5'				0.054	0.11	
148	2,3,5,2',4',6'						
149	2,3,6,2',4',5'			0.091	0.43	1.13	
151	2,3,5,6,2',5'				0.063	0.011	
153	2,4,5,2',4',5'		0.001	0.008	0.20	0.50	
154	2,4,5,2',4',6'					0.023	
156	2,3,4,5,3',4'					0.005	
157	2,3,4,3',4',5'				0.002		
158	2,3,4,6,3',4'				0.015	0.006	
163	2,3,5,6,3',4'						
167	2,4,5,3',4',5'				0.004	0.003	
168	2,4,6,3',4',5'			0.026	0.20	0.028	
Heptachlor	obi phen yls						
170	2,3,4,5,2',3',4'				0.003	0.004	
171	2,3,4,6,2',3',4'				0.007	0.10	
174	2,3,4,5,2',3',6'					0.002	
176	2,3,4,6,2',3',6'			0.006		0.038	
177	2,3,5,6,2',3',4'						
179	2,3,5,6,2',3',6'				0.042	0.062	
180	2,3,4,5,2',4',5'				0.008	0.077	
181	2,3,4,5,6,2',4'				0.009	0.086	
182	2,3,4,5,2',4',6'					0.013	
183	2,3,4,6,2',4',5'				0.044	0.098	
185	2,3,4,5,6,2',5'				0.040	0.20	
186	2,3,4,5,6,2,6				0.001	0.021	
18/	2,3,5,0,2,4,5			0.12	0.021	0.048	
188	2,3,3,0,2,4,0			0.13	0.008	0.007	
100	2,3,4,3,5,4,3						
190	2,3,4,3,0,3,4				0.004	0.019	
192	2,3,4,3,0,3,3				0.004	0.015	
195	2,5,5,0,5,4,5					0.015	
Octachioro	Diphenyls					0.002	
194	2,3,4,5,2',3',4',5'					0.003	
195	2,3,4,5,6,2',3',4'					0.005	
190	2,3,4,5,2,3,4,6					0.005	
19/	2,3,4,0,2 ,3 ,4 ,0				0.000	0.005	
198	2,3,4,3,0,2,3,3				0.009	0.001	
199	2,3,4,3,0,2,3,0					0.003	
200	2,5,4,0,2,5,5,0					0.004	
201	2, 5, 4, 5, 2, 5, 5, 6					0.012	
202	2, 5, 5, 6, 2, 5, 5, 6					0.009	
203	2, 3, 7, 5, 0, 2, 7, 5					0.003	
205	2, 3, 4, 5, 6, 7, 4, 5,					0.005	
	2,0,7,0,0,0,7,0						
INORACTION	oupnenyis					0.001	
200 207	2, 3, 4, 3, 0, 2, 3, 4, 5					0.001	
207	2, 3, 4, 3, 0, 2', 5', 4', 0'					0.004	
208	2,3,4,3,0,2 ,3 ,3 ,6					0.001	

TABLE III (continued)

* These partial pressures were calculated from literature P_L^0 values (Table I).

Aroclor fluid	$I P_L \ (Torr, \ 25^{\circ}C)$					
	Dexsil 410 RI Correlation	OV-101 RI Correlation	Mackay and Wolkoff (ref. 2)			
1016	9.01 · 10 ⁻⁴	9.05 · 10 ⁻⁴	Not reported			
1242	5.72 · 10 ⁻⁴	$5.76 \cdot 10^{-4}$	4.06 · 10 ⁻⁴			
1248	1.87 · 10 ⁻⁴	1.80 · 10 ⁻⁴	4.94 · 10 ⁻⁴			
1254	3.26 · 10 ⁻⁵	$3.18 \cdot 10^{-5}$	7.71 · 10 ⁻⁵			
1260	1.37 · 10 ⁻⁵	$1.24 \cdot 10^{-5}$	4.05 · 10 ⁻⁵			

TABLE IV VAPOR PRESSURES OF AROCLOR FLUIDS

CONCLUSIONS

The vapor pressure data reported in this study are useful from two aspects. First, vapor pressure estimates are now available for all the PCBs found in commercial Aroclor fluids. When modeling PCB transport phenomena, such as air-water exchange and adsorption to airborne particles, it is the individual PCB vapor pressures which are needed. Second, calculations of vapor pressures for the commercial fluids show which PCBs in the mixtures dominate the "overall" vapor pressure. It is these components that are most likely to be enriched in gaseous PCB emissions from spills and disposal sites. The approach used in this study shows promise in estimating the volatilities of other complex mixtures from known vapor pressures of a limited number of components in the mixtures, coupled with GC retention data.

ACKNOWLEDGEMENTS

Special thanks to P. W. Albro and D. Mackay for their valuable comments and suggestions. Financial support for this study was provided by the U.S. Department of Agriculture, Specific Cooperative Agreement No. 58-32U4-4-750. Contribution No. 584 of the Belle W. Baruch Institute.

REFERENCES

- 1 Monsanto Corporation technical bulletin O/PL-360A.
- 2 D. Mackay and A. W. Wolkoff, Environ. Sci. Technol., 7 (1973) 611.
- 3 T. F. Bidleman, Anal. Chem., 56 (1984) 2491.
- 4 P. W. Albro, J. K. Haseman, T. A. Clemmer and B. J. Corbett, J. Chromatogr., 136 (1977) 147, and correction in J. Chromatogr., 139 (1977) 404.
- 5 P. W. Albro and C. E. Parker, J. Chromatogr., 169 (1979) 161.
- 6 P. W. Albro, J. T. Corbett and J. L. Schroeder, J. Chromatogr., 205 (1981) 103.
- 7 M. D. Mullin, C. M. Pochini, S. McCrindle, M. Romkes, S. H. Safe and L. M. Safe, *Environ. Sci. Technol.*, 18 (1984) 468.
- 8 R. C. Weast (Editor), Handbook of Chemistry and Physics, CRC Press, Cleveland, OH, 57th ed., 1976, D-191.
- 9 D. R. Augood, D. H. Hey and G. H. Williams, J. Chem. Soc., (1953) 44.
- 10 N. K. Smith, G. Gordin, W. D. Good and J. P. McCullough, J. Phys. Chem., 68 (1964) 940.

- 11 J. W. Westcott, C. G. Simon and T. F. Bidleman, Environ. Sci. Technol., 15 (1981) 1375.
- 12 L. P. Burkhard, D. E. Armstrong and A. W. Andren, J. Chem. Eng. Data, 29 (1984) 248.
- 13 D. Mackay, A. Bobra, D. W. Chan and W. Y. Shiu, Environ. Sci. Technol., 16 (1982) 645.
- 14 N. Draper and H. Smith, Applied Regression Analysis, Wiley, New York, 2nd ed., 1971, Ch. 1, p. 1.
- 15 R. C. Reid, J. M. Prausnitz and T. K. Sherwood, *The Properties of Gases and Liquids*, McGraw-Hill, New York, 3rd ed., 1977, Ch. 8, p. 288.
- 16 F. T. Eggertsen, N. R. Nygard and L. D. Nickoley, Anal. Chem., 52 (1980) 2069.
- 17 R. J. Steichen, R. G. Tucker and E. Mechon, J. Chromatogr., 236 (1982) 113.
- 18 K. Ballschmiter and M. Zell, Z. Anal. Chem., 302 (1980) 20.